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The obj"ct of this paper is twofold. First, certain fixed point theorems of
Dotson [I] are generalized (Theorems J, 2) by an appeal to an earlier result of
this author [5]. Second, one of these theorems is utilized to obtain a theorem
(Theorem 3) on best approximations which incidentally generalizes a result of
Meinardus ([3], Theorem). This theorem has interesting applications brought out
in its corollaries, and its proof reveals how the original proof of Meinardus can
be considerably simplified with no appeal to algebraic-topological ideas implicit
in Schauder's f1xed point theorem.

I. PRELIMINARIES

If E is a linear space, as is well known, a subset S of E is said to be star
shaped with reference to p E' S if for each s E' S, the line segment [p, s] C S.
SeE is said to be star-shaped if it is star-shaped with reference to one of its
elements. A convex set is obviously star-shaped.

If E is a normed linear space, T: S -,,* S is nonexpansive if for any pair
x, YES, !: T(x) - T(y)[[ ~ : x - Y i, , where I: ./: is the norm on E. Contrac
tion mappings are thus nonexpansive and any nonexpansive map is con
tinuous.

DEFINITION I. A subsetSof a normed linear space E is said to be E-cha:inable
(for a positive real number E) if for any pair x, YES, we can find 3L finite
number of elements Zi, i ,~, 0, 1,2, ... , n with Z() = x and Zn Y such that
:1 Zi ~ zi+ll' 'c-; E for i = 0, I, ... , n - l. (Thus star-shaped subsets are
E-chainable for every positive real number E.)

DEFINITION 2 [2]. An operator T on a subset S of E, a normed linear
space, mapping S into E is called an E-Iocal contraction (for a positive real
number E) if for each XES, we can find a positive number A(x) less than 1 such
that for Yl' Yz E' {z : Ii x - Z ~ E], 'i T(YI) .- T(yz) I ~ A:I Yl -- Y2 II. ]1' A
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does not depend on XES, T is said to be an (E-A) uniform local contraction
operator.

Just by a clever use of the contraction mapping principle, Dotson ([I].
Theorem I) proved

THEOREM A. If S is a compact and star-shaped subset of the normed linear
.space E and T : S -~ S is nonexpansire, then T has a fixed point.

The import of Theorem A is that in Schauder's theorem, to the effect
that any continuous map T: S· ~ S, where S is compact and convex in E, has
a fixed point, we can relax the convexity assumption by requiring T to be more
than continuous, viz., nonexpansive.

It may be recalled ([5], Definition 4) that [ : S -; S is said to be a Banach
operator of type k on S if there exists a constant k, 0 k I such that

T(x) _. P(x)

From [5J, Corollary 2 we have

k x· T(x)

TIILORL\l B. A continuol/s Banach operator mapping a closed subset ol a
Banach space into itsel! has afixed poilll.

From [2], Theorem I we have

THEOREM C. Any (E-A) uniform local contraction T mapping a closed
E-chainable subset of a Banach space into itself has a fixed point.

The following definition is due to Opial [4].

DEFINITION 3. A map T : S -r E, seE, is said to be demiclosed if for any
sequence {Xii} in S converging weakly to x with {T(x,J} converging strongly to
yEO E, T(x): y.

2. GENERALIZATIONS OF DOTSON'S RESULTS

Theorems I and 2 below generalize Theorems I, 2 of [1].

TilEORUvl 1. Let T be a continuous operator mapping a compact subset S
(of 0 normed linear space E) into itself Suppose

(i) there exist pES and a .fixed sequence ()f positire numbers {k,,:
(k" <:.: I) colIl'erging to I, such that (I···· kll)p .~. knT(x)rSfor each xeS:
furt!Jcrjiireachx",Sandk n , T«(J ··-kn)pLkIlT(x) T(x) (I ··k,,)j!

k"F(x) x ;or
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Oi) S is star-shaped with reference to PES; further ;\ T(x) -- T(y)'
x - .I' ,whenerer I! x - .I' E (x,)' E S)for a positive number E.

Then T has a fixed point.

Proot: If (i) is true, then each map Tn defined by Tn(x) (1 - k n) P
- k nT(x) is a continuous Banach operator of type k n . Further each Tn
maps S into itself in view of hypothesis (i) and so has a fixed point Pn , by
Theorem B. As S is compact, {Pn} has a subsequence {Pn) converging to q, say.
So p,,_c Tn (p" ) == (I ~ k n ) P + k n T(p,,). Making k tend to co. by the

k k J..; k k k

continuity of T, one obtains q °.p!.- T(q), since {k,,) -,. J.
ff (ii) holds, then each map Tn defined above is an (E-k II) uniform local

contraction mapping S into itself. Further, in view of hypothesis (ii), S is
E:-chainable for every positive real number E. SO, by Theorem C, each Tn has
a fixed point. The rest of the proof is as in the preceding paragraph.

Remarks. If S is star-shaped about p, then Theorem A readily follows
from Theorem I. Hypothesis (i) above is an attempt to weaken the convexity
assumption of Theorem A, as illustrated in the following example.

EXAMPlE I. Let S be the set

)(0, y) : }' E [- J. I]} U {( 1- (I/n), 0) : n E N: U {( 1,0)]

with the metric induced by the norm ,:(x. )'): , .\ 1'. Let T be the
mapT(O,)') (O,-Y),T(I--(I/n),O)=(O,I-(I/n))andT(I,O) (0,1).
We can apply Theorem I with condition (i) to T with the choice p (0,0),
k n 1 (l/n),11 1,2,... , so that the existence of a fixed point for Tis
insured, though S is not star-shaped.

Resides. the following corollaries are worth the mention.

COROLLARY 1. Erel)' continuous T: 5 --+ S where S is compact and star
shaped lI'ith reference to p E 5 has a fixed point whenerer T((I--y) p
J(x)) T(x) '(l -t) P eT(x) x, X E 5, .. E [0, I].

COROLLARY 2. Let T: 5 -+ S he such that for a pO,litire number
E, x .I' E implies: T(x) ~ T(y)!' : x --- y!. Then T has ({ fixed
point, whenever S is star-shaped and compact.

Theorem 2 below is a fixed point theorem for continuous operators with
J -- T demiclosed, in extension of the result of Dotson ([I], Theorem 2).

Til EORE\1 2. Let T: S .-+ S be continuous where S is weakly compact in
the Banach space E. IffilYther T satisfies condition (i) or (ii) of Theorem 1,
then T has a fixed point, whenever J - Tis demic1osed.
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Proof. S is weakly compact and since the weak topology is HausdortT, S

is strongly closed. S being a closed subset of the Banach space E, it follows
that S is complete in the induced metric. As in the proof of Theorem I, each
operator Tn defined by TI/(x) (I k,,) I' k II T(x) maps S into itself and
has a fixed point Pn . The rest of the argument is (an application of the
Eberlein-Smulian theorem essentially) exactly as in Dotson's proof of
Theorem 2 of [I Jand is omitted.

Reillarks. As observed by Dotson. it suthces to assume in Theorem 2
that for each {x,,: in S weakly converging to x in Sand {(! T)(.,,,): con
verging strongly to 0, (1 -.- T)C,) 0 instead of assuming that (I T) is
demicloscd. Again analogs of the corollaries to Theorem I with the addi
tional assumptions that S is a weakly compact subset of a Banach space and
that (1- T) is demiclosed are easily deduced.

3. ApPLICATION TO BEST ApPROXIMAT10'\,

THEOR[\l 3. Ler E he a nor/l]ed linear space, V he a .IiI/ire-dimensional
suhspace, and T: E .. + E hal'ing a fixed point f he such that; x - y d,( ~/)

implies T(x) T(y) x Y'. 1l'hNe df( V) denotes the distance of' f
Fom v. If T maps V into itself; thell f hal a hesr approximation ill ~ \,hich 1.1
al/otherli.Yed point 0/ T.

Proof. Since V is tinite-dimensional. Sf the set of all best approximations.
viz., g lying in V such that g- f infvEv r f. is nonempty. If
gr=S, , then T(g)c V, becauseStC Vand T(V)C V. T(J~) f T(g)

T(f)' g f for each g E S,. in view of T(f) f. Thus T maps Sf into
itself. The theorem follows trivially, if the best approximations in V are
necessarily unique (i.e.. for instance when V is strictly convex).

If Sf is a nontrivial set, then it is well known that Sf is a closed, bounded.
and convex subset or V. V being finite-dimensional. it follows that S/ is
compact. Applying Corollary 2 of Theorem I to the map T: S, >- S/ we
conclude that T has a fixed point in S, and the proof is complete.

COROllARY I. I( T: J:" .... L be a nOl1expansire operator lIitli a fixed

poinr f alld learing a .Iinite-dimensional suhspace V 0/ E incariant, then f has II

hest approximarion in V which is a fixed point of T.

The following result of Meinardus ([3], Theorem) is easily deduced from
Corollary I.

COROLLAR Y'" Let l' : B· >- B he continuous, u11ere B is a compact metric

.If1acc. If' e[B] is tile space of all continuous real (or complex) functions on B
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with the supremum norm, !et A : e[B] ---'> qB] satis/r Lipschitz condition
with I as a Lipschirz constant. Suppose further that

(i) A(f(T(x))) = fix),

(ii) A(h(T(x») E V, lI'!u!nCl'er h(x) E V, )\'here V is a finite-dimensioned
subspace of C[B]. Then the/'l! is a best approximation goff Irith respect to V
such that A(g(T(x))) ==~ g(x).

To deduce Corollary 2 it needs only to be observed that the map rP : C[B] ~
C[S] defined by cP(g(x»" A(g(T(x))) satisfies all the hypotheses of Corollary 1
of Theorem 3.

To formulate the subsequent corollaries it is convenient to introduce the
concept of a regular function space.

DEFI"lTlON 4. A normed linear space <E, of functions on a set X
and taking values in a normed linear space'N, .:] is called A-regular if
every operator T: E ~ E satisfying the condition! TUl(X» TUJx» '1

/;(A(x» -- f;(A(x»)]I' x r-: X,f; ,f~ E E, for some mar A : X ~ X. is non
expansive in the norm

A typical example of a space of real functions regular for all mappings is
the linear space of all bounded real functions on a set X with the norm

f-- a1 sup f(x)'
,('EX

ao[max (f(x), 0)
- :re.-Y

max ( . fix), 0)]
J"cJ.

(I)

where {II , (I~ ::c 0 and not both zero. Similarly B the space of all real-valued
bounded measurable functions of a measure space ~X, Y, ,"t admits of an
identity-regular norm given by

Pi '~.- a l sup f(x)
.,.,. ..1'

(II)

where f,,, . ff If(x)I",d0}11 and a" is a bounded sequence of real num bel'S
such that a l and a2 are nonzero.

However, not all function-spaces are A-regular for any map A. This is
illustrated by the following example.

EXAMPLE 2. Let X be {a) and N be the space R2 with the norm I

defined by iex, Y)!I =c r x i -, y . Let E be the space of all maps lea) of X
into R2 with the norm lif(aYi '(fI(a),Ua»! max{i,fr(a). fkl)} (Thus
E is a space of functions taking values in N) Define T: E --+ E as T(f)
TC!J.(a)Jia» = (/;(a) -;- f2(a), 0). For any f gEE, it is easily seen that
T(f)- T(g)!' 1 I flea) -- gl(a) na) - gia)' ' f -- g l' However
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i T(f) Tlfd Max{1 hla) nay gt(a) g~(a), 0: f g
Max{t;(a) g/a)].; f2(a)- g2(a)!L for instance. when g I where
f U~ .f~) and It .f~ . O. Then E is not regular in the sense of the above
definition.

COROLLARY 3. Let <E. ' he an inversioll regular normal linear space
oFflll1ctioJls on [ . I. I} and V. a finite-dimensional sub~fJace of E such that
hex) E V implies that h(--x) also fies in V. Then eeery I!l'en (odd) function in E

has an I!l"ell (odd) best approximation ill !-'.

Proof The operator 7: FT E delined by nh(x» h( x)[ h( xl}
is nonexpansive as E is inversion-regular. Further T maps V into itself so
that in view of Theorem 3, f(:d has an even (odd) best approximation.

It may he ,cen that the space of all continuous real-valued functions on
I. I} with the norm given by (II) is inversion-regular.

The remaining corollaries insure that for certain choices of functions and
suhspaces 0 is necessarily a hest approximation.

COROUAR Y 4. Let L be a translation-regular notl/ed linear space
oFfunctions on a linear space X and taking ralues ill a normed linear space

N. . Supposc that

(i)

(Ii)

(iii)

t" . . ill

f,Jx ()

Det (a,,,;

I. 2..... II. are lincarly independent functions or F:

2.;' J a",IJ;(.x)fil/" alf.\ E X and fixed rector r ill X:

8",;.) is l1on::ero.

Then cU'ITfi/llcrionf in L periodic wirh period t hm 0 as it hest approximorioll
I\'irh respect to V. the space spanned bl' U;" : 1II I, 2..... II:.

Proof: The operator 'I: t' T E defined hy nf(x))
into itself 111 view of (ii) and

I(x r) maps!'

T(j,(x») 1 t) 1 •

Since for lixed t, x r ranges over X and E is translation regular. T is
nonexpansive. Hence by Corollary I of Theorem 3. f has a best approxima-
tion g in r such that g(x r) glx).

If g(x) 2.:1

1 b;f(x). then. since gl.Y) g(.\ rL

I hJ,(y)
i1

"I I li/a"I,.(\)
i 1 J.. I

i (I h,all.)t;,eX).
I. 1 I I
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So by the linear independence of U;,,(\'): III I, 2,«<, n: we have
L:'~l b,aik -= bk for k = 1, 2, ... , n. LZool (a ik -- Oil,) bi 0 for i-I, 2, ... , II.

Since Det (aa- .-- Oik) =, 0, it follows that hi " O. So 0 is a best approxima
tion of fin V, as required to be proved.

COROLLARY 5. Let (E,' . L) be a strongly regular .\pace of jimetions
defined on a linear .\pace X (and taking calues in a normed linear space
>V., . 1» in the sense that for any map h : X -+ X such that f. C' h.j~ hE E

forj; .j; fCC E.:}; c h - j~ 0 h [, Y; - j~ I . Suppose that

(i) g: X -+ X is such that fog E Efor each fEE:

(ii) .h ,f'l ,··.,fn are linearly independent e!emel1fs of E:

(iii) I,,(g(x» = L:'~l a"'iI(x):

(iv) Det (a lili - om,) = O.

Then for any element fEE such that l(g(x» = lex), 0 is a best approxima
fion off in V, the space _spanned by {hex) : iI, 2, ... , nJ-

Proof Since (E, II . L> is strongly regular and T mapping V into itself,
defined by T(f(x» = l(g(x» is nonexpansive, it follows from Corollary I
that there is a best approximation h such that h(g(x» = hex). Because of
(iii), hex) =-= 0 in the same way g(x) = °in the proof of Corollary 4.

The space of all real-valued continuous functions on a compact topological
space X with the supremum norm is strongly regular. However not all
function-spaces are strongly regular, as illustrated by the following example.

EXAMPLE 3. The space of all continuous real functions on [-I, I] with
the LI-norm is not strongly regular. Let h : [--J, I J -~ [--I, I J be the map
hex) =, I X ~ andf.(x) be the function 0 andfl,) be defined as

fix) x, if x- O.

Clearly

1

ilf. - f~ II = f If;(r) - f'l(t)! dr
• -I

Thus this space is not strongly regular.

=c ?t + } < '.f; 0 h - f~ Q h
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4. EXAMPLES

EXA\1PIE 4. 0 is a best approximation of cos cos x with respect to thc
subspace spanned by cos 111X, sin 111X. m"" 1,3,5, .... 2/1 I, for any non
negative integraln in the space of all bounded real-valued functions of a real
variable under any translation regular norm. as seen from Corollary 4 by
taking I N. This in turn implies that 0 is still a best approximation in the
space spanned by {cos (2m·· I) x, sin (2m !- I) x: 11/ 0, I, 2, ... :.

[XA:>IPLE 5. Let B be the space 01" alt bounded real-valued functions oj' a
rea! variable with the supremum norm. Let 1'1 ' I'~ " .. , r" be 1/ distinct real
numbers and .ftkx) be a function of a real variable with inf,cnJ;k') r, fpr
i !, 2, ... 1/ Taking g(x) .Mx),j; the characteristic function 01':1',:
and V the linear span of these functions U; : iI, 2, .... n:, the conditions of
Corollary 5 are readily verified. (For. f(g(x)) O. l l, and (iv) of
Corollary 5 is obvious as each (I",; 0.) Consequently for any function fin
B V and satisfying f(,l;o(Y)) f(x), 0 is a best approximation in V by
Corollary 5.

For instance, onc may choose r; i, i ,= N, and ii, 2, ... , 1/ with
It/x) x. In this case, it follows that 0 is a best approximation in V fur
any bounded even function in B- V
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