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The object of this paper is twofold. First, certain fixed point theorems of
Dotson [1] are generalized (Theorems 1, 2) by an appeal to an earlier result of
this author [5]. Second, one of these theorems is utilized to obtain a theorem
(Theorem 3) on best approximations which incidentally generalizes a result of
Meinardus ([3], Theorem). This theorem has interesting applications brought out
in its corollaries, and its proof reveals how the original proof of Meinardus can
be considerably simplified with no appeal to algebraic-topological ideas implicit
in Schauder’s fixed point theorem.

1. PRELIMINARIES

If Eis a linear space, as is well known, a subset S of E is said to be star-
shaped with reference to p € S if for each s€.S, the line segment [p, s]C S.
S C £ is said to be star-shaped if it is star-shaped with reference to one of its
elements. A convex set is obviously star-shaped.

If £ is a normed linear space, 7 : S-S is nonexpansive if for any pair
x, peS I T(x) — Ty < x — yi, where | | is the norm on £. Contrac-
tion mappings are thus nonexpansive and any nonexpansive map is con-
tinuous.

DEFINITION 1. AsubsetSof a normed linear space £ is said to be e-chainable
(for a positive real number ¢) if for any pair x, y € S, we can find a finite
number of elements z,, i == 0,1, 2,..., n with z, = x and z, -= y such that
Wz —zq i <e for i=0,1,...,n— 1. (Thus star-shaped subsets are
e-chainable for every positive real number e.)

DEerFiNiTION 2 [2].  An operator 7 on a subset S of FE, a normed linear
space, mapping S into £ is called an e-local contraction (for a positive real
number €) if foreach x € S, we can find a positive number A(x) less than 1 such
that for yy,y.ef{z:fx —z] e, 1T — TR <Ay — 2l If A
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does not dependon xe S, T issaid to bean (e-A) uniform local contraction
operator.

Just by a clever use of the contraction mapping principle, Dotson ([1].
Theorem 1) proved

THEOREM A.  If' S is a compact and star-shaped subser of the normed linear
space E and T : S — S is nonexpansive, then T has a fixed point.

The import of Theorem A is that in Schauder’s theorem, to the effect
that any continuous map 7 : § -» S, where S is compact and convex in £, has
a fixed point, we can relax the convexity assumption by requiring 7 to be more
than continuous, viz., nonexpansive.

It may be recalied ([S], Definition 4} thai 7 :.S — S1s said to be a Banach
operator of type k on S if there exists a constant &, 0 = &k -< | such that

T(x) — T3x): = kix - T(x),.
From [5], Corollary 2 we have

Turorem B. A continuous Banach operator mapping a closed subset of a
Banach spuce into itself has a fixed poini.

From [2], Theorem | we have

Turorim C. Any (e-A) uniform local contraction T mapping a closed
e-chainable subset of a Banach space into itself has a fixed point.

The following definition is due to Opial [4].

DermNITION 3. Amap 7:S—> £, S C £, 1s said to be demiclosed if for any

sequence {x,} in S converging weakly to x with {7(x,)} converging strongly to
ve k£ T(x) = y.

2. GENERALIZATIONS OF DOTSON's RESULTS
Theorems 1 and 2 below generalize Theorems 1, 2 of [1].

Tigorem 1. Let T be a continuous operator mapping a compact subset S
(of ¢ normed linear space E) into itself. Suppose
(1) there exist pe S and a fixed sequence of positive numbers ik,
(k, << 1) converging to }, such that (1 ~— L,y p -+ k,T(x)e S for each x ¢ 5
Surther for each x e Sand k,, |1 T((V — kyp -+ k,T(N- T(x) = (1 - k)p
kLTI - v or
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(ity S is star-shaped with reference to p € S; further } T{x) - Ty} 2
x — v, whenever| x — vil << e (x,)y€S) for a positive number e.

Then T has a fixed point.

Proof. 1f (i) is true, then each map 7, defined by T,(x)==(1 — k,)p
— k,T(x) 1s a continuous Banach operator of type k,. Further cach 7,
maps S into itself in view of hypothesis (i) and so has a fixed point p, , by
Theorem B. As Sis compact, {p,} has a subsequence {p, }converging to ¢, say.
So p, = Tapn) = (1 —ky)p 4k, T(p,). Making & tend to sc. by the
continuity of 7, one obtains ¢ — 0 p - T(q), since {k,, ; — 1.

If (ii) holds, then each map T, defined above is an (e-k,) uniform local
contraction mapping S into itself. Further, in view of hypothesis (ii), S is
e-chainable for every positive real number e. So, by Theorem C, each 7, has
a fixed point. The rest of the proof is as in the preceding paragraph.

Remarks. If S is star-shaped about p, then Theorem A readily follows
from Theorem [. Hypothesis (i) above is an attempt to weaken the convexity
assumption of Theorem A, as illustrated in the following example.

Examprt 1, Let S be the set
WO, e [—L Ul —(1in), 0) :ne N UL 0)

with the metric induced by the norm #(x, y}: - x - 1 . Let 7 be the
map 70, v) = (0, —y), T(1 - (i/n), 0) -= (O, I — (I/m))and T(1, 0) - (O, 1.
We can apply Theorem 1| with condition (i) to T with the choice p = (0, 0),
Kk, =1 —=(1/m),n==1,2,., so that the existence of a fixed point for T is
nsured, though S'is not star-shaped.

Besides. the following corollaries are worth the mention.

COROLLARY 1. Ervery continuous T : S — S where S is compact and star-
shaped with reference to pe S has a fixed point whenever " T((1 ~— x)p -
NARS)) Ty =il —x)p - xT(x) - x'1, xeS, ~e[0, 1]

COROLLARY 2. Let T:S — S be such that for a positivce number
€ X v . =€ implies " T(x) — T =i x — vl Then T has a fixed
point, whenever S is star-shaped and compact.

Theorem 2 below is a fixed point theorem for continuous operators with

I — T demiclosed, in extension of the result of Dotson ([1], Theorem 2).

Tueorem 2. Let T: S — S be continuous where S is weakly compact in
the Banach space E. If further T satisfies condition (i) or (i) of Theorem 1,
then T has a fixed point, whenever I — T is demiclosed.
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Proof. S is weakly compact and since the weak topology is Hausdorff, S
is strongly closed. S being a closed subset of the Banach space E, it follows
that § is complete in the induced metric. As in the proof of Theorem 1, each
operator 7', defined by 7,(x) - (I k.,yp  k,T(x) maps S into itself and
has a fixed point p, . The rest of the argument is (an application of the
Eberlein-Smulian theorem essentially) exactly as in Dotson’s proof of
Theorem 2 of [1T and is omitted.

Remarks.  As observed by Dotson. it suffices to assume in Theorem 2
that for each {x,} in S weakly converging to x in S and {(/ - T)x,)} con-
verging strongly to O, (/ — 7T)(x) 0 instead of assuming that (/  7) is
demiclosed. Again analogs of the corollaries to Theorem 1 with the addi-
tional assumptions that S is a weakly compact subset of a Banach space and
that (/ - T)is demiclosed are easily deduced.

3. APPLICATION TO BEST APPROXIMATION

TaeorREM 3. Let £ be a normed linear space, V' be a finite-dimensional
subspace, and T 1 E -~ L having a fixed point [ be such that ' x — v -7 d (V)
implies " T(x) - T(): ~  x- yi . where dAV) denotes the distance of f
Jrom V. If T maps V' into itself, then [ has a best approximation in V owhicl is
another fixed point of T.

Proof.  Since V' is finite-dimensional, S, the set of all best approximations.
viz., g lymg in } such that ; g — f =~ inf,p ¢ -~ 1$ nonempty. If
ge S, , then T(g)e I, because S; C Vand T(V)C ¥ T(g) ~ [ T(g)
T(fy i g -f foreachgeS,, in view of T(f) — f. Thus T maps S, into
itself. The theorem follows trivially, if the best approximations in V' are
necessarily unique (1.c., for instance when ¥V is strictly convex).

If S, is a nontrivial set, then it is well known that S, is a closed, bounded.
and convex subset of V. }J being finite-dimensional. it follows that S, is
compact. Applying Corollary 2 of Theorem | to the map 7:S, »S, we
conclude that 7 has a fixed point in S, and the proof is complete.

CoroLtary 1. If T:E->E be a nonexpansive operator with u fixed
point [ and learing a finite-dimensional subspace V' of E invariant, then | has
best approximation in V which is ua fixed point of T.

The following result of Meinardus ([3], Theorem) 1s easily deduced from
Corollary 1.

CorOLLARY 2. Let T B-»> Bbe continuous, where B is a compact metric
space. If C[B] is the space of all continuous real (or complex) functions on B
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with the supremum norm, let A . C[B] — C[B] satisfy Lipschitz condition
with 1 as a Lipschitz constant. Suppose further that

(1) Af(T(x)) = f(x),

(1) AW(T(x)) € V., whenever h(x)e V, where V' is a finite-dimensional
subspace of C[B]. Then there is a best approximation g of fwith respect to V
such that A(g(T(x))) = g{x).

To deduce Corollary 2 it needs only to be observed that the map ¢ : C{B] —
C[B] defined by ¢(g(x)) - - A{g(T(x)))satisfies all the hypotheses of Corollary 1
of Theorem 3.

To formulate the subsequent corollaries it is convenient to introduce the
concept of a regular function space.

DeriNiTION 4. A normed linear space <E, | - > of functions on a set X
and taking values in a normed linear space N, ' -1, is called A-regular if
every operator T : £ — E satisfying the condition | T(fi(x)) - T(fox))'; ~:

FULAXY) — [AX) . xs X f,, f,e E, for some map 4 : X -~ X, is non-
expansive in the norm i -

A typical example of a space of real functions regular for all mappings is
the linear space of all bounded real functions on a set X with the norm

L gy sup V)Y - ag[r]gczlg( (f(x), 0) - max (- flx), O] (h
reX " e

where «¢, , 4, ;> 0 and not both zero. Similarly B the space of alf real-valued

bounded measurable functions of a measure space X, /", - admits of an

identity-regular norm given by

Fi=ay sup () - asfmax (f{x). 0)
e X reX

- max (—1(x), 0)] - Z - ._:‘3;:2,' n (1

-1

where [, = (J 1L/(x)[" du)' and a, is a bounded sequence of real numbers
such that a, and a, are nonzero.

However, not all function-spaces are A-regular for any map 4. This is
illustrated by the following example.

ExavpLE 2. Let X be {¢; and N be the space R* with the norm -
defined by !'(x, ¥}/, = | x| — [y . Let £ be the space of all maps f(a) of X
into R? with the norm ! f(a)] = (fi(a), fu(@)) —+ max{| fi{a): .| fi(a)}. (Thus
F is a space of functions taking values in N.) Define 7: F' -~ E as T(f)

T fila), fo(a)) = (fi(a) -+~ fo(a), 0). For any f.ge E, it is casily seen that

T — T @) - gl@) - fia) — gf@) — f—g . However
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P o T Max{] fila) - fla) -+ gday gy 00 - f g =
Max{i fila)  gi(a)l . | fola) — ga)|}, for instance. when g ==  f where
S = (fi . foyand fi, f. - 0. Then E is not regular in the sense of the above
definition.

COROLLARY 3. Let <E.' - be an inversion regular normed linear space
of functions on [ 1, 1] and V. « finite-dimensional subspace of E such that
h(x) e Vimplies that h(—x) also lies in V. Then every even (odd) function in £
has an ecen (odd) best approximation in V.

Proof. The operator T £ > [ defined by TU(x)) -k 0} A ]
is nonexpansive as E is mversion-regular. Further 7 maps I into itself so
that in view of Theorem 3, f(x) has an even (odd) best approximation.

It may be seen that the space of all continuous real-valued functions on
[~ 1, 1] with the norm given by (11) is inversion-regular.

The remaining corollaries insure that for certain choices of functions and
subspaces 0 1s necessarily a best approximation.

CoroLiary 4, Let < E.. - be a translation-regular nomed linear spuce
of functions on «a linear space X and taking values in a normed linear space
N, Suppose that
Uy i 1, 20 e are finearly independent functions of E:
() L0 1Y Sy fAX) for all x € X and fixed vector tin X:
(i) Det (u,,, —~ 0,,.) is nonzero.
Then crery function [ in E periodic with period t has O as « best approximation
with respect to ¥, the space spanned by { f, - m = 1, 2.0,
Proof. The operator 70 £ > £ defined by 7¢/(x))  ftx 1) maps ¥
into itselt in view of (ii) and
T - TR Sl oy sy ey

Since for fixed f, v  r ranges over X and F is tranglation regular, 7 is
nonexpansive. Henge by Corollary | of Theorem 3., f has a best approxima-
tion g in ¥ such that g(x < ) - g(x).

Ifg(x) X7 b fix). then. since ¢(x)  «lv 7).

\; bifix)y - Z Z byt [iAX)

i1 i1

=YY ) it
[ A
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So by the linear independence of {f(x):m ==1,2,. 1 we have
S bag = by for k=120 Y (@ 8,)b; =0 fori—1,2,..0
Since Det (a;;, — 8;) = 0, it follows that 5, == 0. So 0 is a best approxima-
tion of fin V, as required to be proved.

COROLLARY 5. Let (E,' -i> be a strongly regular space of functions
defined on « linear space X (and taking values in a normed linecr space
INVT ) in the sense that for any map b2 X — X such that fi-h. [, he E
forfi.foe Eifyoh— okl <l fy — o) . Suppose that

(1) g: X — Xissuchthat fogeFE for cach fe E.

() [ oS seees [ are linearly independent elements of E;
(i) fu(g(x) = iy @ui flx):
(IV) DC'[ (ami - 51711‘) = 0

Then for any element f e E such that f(g(x)) = f(x), O is a best approxima-
tion of f in V, the space spanned by { fi(x) : i =+ 1, 2,..., n}.

Proof. Since (E, || -1> is strongly regular and 7 mapping V into itself,
defined by 7(f(x)) = f(g(x)) is nonexpansive, it follows from Corollary |
that there is a best approximation £ such that A(g(x)) == #(x). Because of
(iii), i{x) == 0 in the same way g(x) = 0 in the proof of Corollary 4.

The space of all real-valued continuous functions on a compact topological
space X with the supremum norm is strongly regular. However not all
function-spaces are strongly regular, as illustrated by the following example.

ExampLE 3. The space of all continuous real functions on [—1, 1] with
the L;-norm is not strongly regular. Let #: {-~1, I]-—[-1, 1] be the map
J{x) == ! x ! and fi(x} be the function 0 and fi(x) be defined as

Folx) = x, if x 220,
= X%, if x <0,

Clearly
A= L= | 1AG RO di= [t di
Jo vl
=3 L < fioh —fyohl
=,
Yl

Thus this space is not strongly regular.
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4, EXAMPLES

Exavprt 4. 0 is a best approximation of cos cos v with respect to the
subspace spanned by cos mx, sin mx. m == 1,3,5....2n [, for any non-
negative integral » in the space of all bounded real-valued functions of a real
variable under any translation regular norm. as seen from Corollary 4 by
taking ¢ -~ 7. This in turn implies that O is still a best approximation in the
space spanned by {cos (2m - 1) x,sin (2m - 1)y xom = 0,1, 2,0,

Exampre S0 Let B be the space ot all bounded real-valued functions ol a
real variable with the supremum norm. Let r,.r .../, be # distinct real
numbers and f,(x) be a function of a real vanable with inf, ., /y(x) = r, for
i 1,20 Taking g(x) - fy(v).f; -~ the characteristic function of {r,
and ¥ the hnear span of these functions { £, -7 - 1, 2,..., n}, the conditions of
Corollary 5 are rveadily verified. (For, f(g(x)) = 0./ ¥, and (iv) of
Corollary 5 1s obvious as each «,,, - 0.) Consequently for any function f i
B -V and satisfying f(gy(x)) — f(x). 0 is a best approximation in [~ by
Corollary 5.

For instance, onec may choose r; L i=N, and ¢ 1, 2,..., 1 with
Jox) == x . In this case, it follows that 0 is a best approximation in V' for
any bounded even function in B — }".
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